西门子模块6ES7223-1BF22-0XA8型号含义

发布日期 :2023-12-20 04:03 编号:13004985 发布IP:180.174.45.72
供货厂家
浔之漫智控技术-西门子PLC代理商  
报价
电议
联系人
聂航(先生)经理
手机
15221406036
询价邮件
3064686604@qq.com
区域
上海松江工控系统及装备
地址
上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
在线咨询:
点击这里给我发消息
让卖家联系我
详细介绍
手机版链接:https://m.trustexporter.com/cz13004985.htm
西门子模块6ES7223-1BF22-0XA8型号含义  引言    在生产机械的自动控制领域,PLC顺序控制系统的应用量大面广。然而,工艺不同的生产机械要求设计不同的控制系统梯形图。目前,不少电气设计人员仍然采用经验设计法来设计PLC顺序控制系统,不仅设计效率低,容易出差错,而且设计阶段难以发现错误,需要多次调试、修改才符合设计要。本文提出的4种简易设计方法,能快速地一次设计成功PLC顺序控制系统。    顺序控制系统的特点及设计思路    1.特点顺序控制系统是指按照预定的受控执行机构动作顺序及相应的转步条件,一步一步进行的自动控制系统。其受控设备通常是动作顺序不变或相对固定的生产机械。这种控制系统的转步主令信号大多数是行程开关(包括有触点或无触点行程开关、光电开关、干簧管开关、霍尔元件开关等位置检测开关),有时也采用压力继电器、时间继电器之类的信号转换元件作为某些步的转步主令信号。    为了使顺序控制系统工作可靠,通常采用步进式顺序控制电路结构。所谓步进式顺序控制,是指控制系统的任一程序步(以下简称步)的得电必须以前一步的得电并且本步的转步主令信号已发出为条件。对生产机械而言,受控设备任一步的机械动作是否执行,取决于控制系统前一步是否已有输出信号及其受控机械动作是否已完成。若前一步的动作未完成,则后一步的动作无法执行。这种控制系统的互锁严密,即便转步主令信号元件失灵或出现误操作,亦不会导致动作顺序错乱。    2.设计思路本文提出的4种简易设计方法都是先设计步进阶梯,在步进阶梯实现由转步主令信号控制辅助继电器得失电;然后根据步进阶梯设计输出阶梯,在输出阶梯实现由辅助继电器控制输出继电器得失电。这4种设计法所设计的梯形图电路结构及相应的指令应适用于大多数PLC机型,具有通用性。    由于各种PLC机型的编程元件代号及其编号不尽相同,为便于阐述,本文约定:所有梯形图中的输入继电器、输出继电器、辅助继电器(又称内部继电器)的代号分别为:X、Y、M。设计中所用到的某些功能指令,如置位指令约定为S×,复位指令为R×;移位指指令为SR×。其中的“×”表示编程元件的编号,用十进制数表示。用这些方法设计实际的控制系统时,应将编程元件代号和编号变换成所选用的PLC机型对应的代号和编号。图1 顺序控制流程    下面分别介绍各种设计方法。其中,前3种方法的设计依据都是图1所示的顺序控制流程。图中,步1的转步主令信号X0为连接启动按钮的输入继电器(为简明起见,后述的转步主令信号均省去“输入继电器”几个字,只提输入信号),X1为原位开关信号,X2、X3、X4分别为步2、3、4的转步主令开关信号。M1~M5分别为各步的受控辅助继电器。Y1~Y4分别为各步受控的输出继电器。    一、逐步得电同步失电型步进顺序控制系统设计法    如图2所示,这种设计方法是根据“与”、“或”、“非”的基本逻辑关系,设计成串联、并联或串、并联复合的电路结构。图2 逐步得电同步失电步进顺控梯形图    1.步进阶梯的设计步进阶梯的结构    如图2a所示。步1的M1得电条件是受控机械原位开关X1处于压合状态(若受控机械有多个执行机构,则要求每个执行机构的原位开关均处于压合状态),满足原位条件后按起动按钮X0才能得电。M1得电后自锁,并为步2提供步进条件信号(M1的常开触点)。步1的执行动作完成时触发的行程开关信号X2作为步2的转步条件信号。步2的M2的输入满足其步进条件和转步条件后得电自锁,并为步3提供步进条件信号。按此规律即可实现后续每一工作步辅助继电器的得电和自锁。停止步M5的步进条件信号和转步条件信号分别为:后一个工作步M4发出的步进条件信号(M4的常开触点)和该步动作完成时所触发的转步信号X1。由于M5的得电信号令控制系统失电,所以M5的回路不自锁,而且要将其常闭触点串联在步1回路的左端。从步2起后续各个步的回路构成分支回路。一旦M5得电便使整个系统失电。如不用分支回路的结构,也可采用图3所示的回路。即把M5常闭触点分别串联在每步辅助继电器的回路上。应该注意的是:无论工作步还是停止步,如果某步的转步主令信号有多个,则应将多个转步主令信号互相串联。图3 逐步得电同步失电梯形图    2.输出阶梯的设计输出阶梯    如图2b所示。其设计方法是:(1)在控制流程图中,找出某输出继电器M在哪一步开始得电和在哪一步开始失电,以此确定其得电信号(步进阶梯中使M开始得电的辅助继电器常开触点)和失电信号(步进阶梯中使M开始失电的辅助继电器常闭触点);(2)将得电信号、失电信号和受控输出继电器线圈串联。如果某个输出继电器在一个工作循环中多次得电失电,则将每次得失电的串联信号互相并联即可。例如,图1中输出继电器Y1要求在步1和步3得电,在其余步失电。在图2b画其控制回路时,将图1所示的次得电信号M1和次失电信号M2串联,第二次得电信号M4和第二次失电信号串联,然后将二者并联起来,再与Y1的线圈串联便构成Y1的控制回路。其余依此类推。    二、逐步得电逐步失电型步进顺序控制系统设计法    1.步进阶梯设计    按图1所示的控制流程,采用逐步得电逐步失电型顺序控制系统设计法设计的步进阶梯如图4a所示,其电路结构与图3的不同点之一是每步的失电由下一步辅助继电器的常闭接点控制;之二是步1回路必须串联步2至后工作步4的辅助继电器常闭触点。以防电路工作时,因误操作再次起动而导致控制顺序错乱。其余的电路结与图3相同。    2.输出阶梯设计输出阶梯如图4b所示,输出继电器的控制回路根据控制流程直观确定。例如,输出继电器Y1要求在步1、3得电,则将步1、3的辅助继电器M1、M3的常开触点并联,再与Y1的线圈串联即可。其余输出继电器的控制回路构成方法与此相同。图4 逐步得电逐步失电型顺控系统梯形图 由于PLC具有体积小、价格低、功能强、运行稳定可靠等特点,且集电控、电仪、电传于一体,所以在工业控制的各个领域得到了广泛的应用。对于要求I/O点数较多,且控制点比较分散的控制系统,可以通过PLC网络实现控制要求。本文介绍利用松下FPΣ构成PC-bbbb网络实现六层电梯的PLC控制。    一、电梯控制系统    电梯主要由轿厢系统、电力拖动系统、电气控制系统等组成。电力拖动系统通过曳引电机实现电梯轿厢的上下移动。电气控制系统实现电梯的自动运行。    电梯控制要求如下:开始时电梯处于任意一层。当有外呼梯信号时,轿厢应该响应呼梯信号,到达该楼层时轿厢停止运行,轿厢门打开,无人操作时延时一定时间后自动关门。当有内呼梯信号时,轿厢响应该呼梯信号,到达该层时轿厢停止运行,轿厢门打开,无人操作时延时一定时间后自动关门。电梯轿厢运行过程中,轿厢上升(或下降)途中,任何反方向下降(或上升)的外呼信号均不响应,但如果反向外呼梯信号前方无其他内、外呼梯信号外呼梯响应功能。电梯未平层即运行时,开门按钮和关门按钮均不起作用。平层且电梯轿厢响应停止后,按开门按钮轿厢门打开,按关门按钮轿厢门关闭。    六层电梯控制系统的硬件是由松下新PLC产品FPΣ(2台)、三相异步电动机、变频器、旋转编码器、内选信号控制器、轿厢内部控制器、外呼装置等组成。2台PLC之间通过PC-bbbb网络实现数据共享,其控制系统结构如图1所示。图1 网络的构成及通信原理    二、PC-bbbb网络的构成及通信原理    PC-bbbb网络是松下电工FPΣ系列PLC网络的子网,为工业局域网,其网络体结构是3层结构(如图2),其中物理层和数据链路层面向通信,应用层面向用户,向用户提供服务。应用层协议以其专用通信协议MEWTOCOL为基础。图2 PC-bbbb网络结构    其通信原理是串行通信中的共享存储器通信,它在网上的各站通信单元内都划出一块存储器,这些存储器在各站均占据相同的地址编号空间。把这样的存储区都构造成信箱。如果网上有n个站,则每个信箱都分为n格,其中1个格作为自己的发送信箱,其他(n-1)格作为(n-1)个接收分箱,与其他(n-1)个站一一对应。如果PC-bbbb的物理层和数据链路层提供的网络通信能够把每个站发送分箱的数据复制到其他(n-1)个站与其对应的接收分箱中去,则每个站只要访问自己的通信单元中的信箱就可以获得全网的通信数据。显然该信箱成为全网共享的存储器。    通过使用链接继电器和链接寄存器,能实现PLC之间的数据共享。在PC-bbbb网络中,打开网络中一台PLC上的链接继电器,也就打开了在同一网络上其他PLC上相同的链接继电器;如果一个PLC的链接寄存器的内容被改变,那么,同一网络上其他PLC上相同的寄存器的内容也相应被修改。    三、PC-bbbb的连接图3 FPΣ通信插卡1通道RS485端口布局    四、PC-bbbb的设置    为了能够实现2个PLC之间正常通信,需进行必要的参数设置。    1. 站号和通信模式的设定    站号设置一方面可以利用FPΣ的站号设置开关进行设置,另一方面可以利用FPWIN GR编程工具使用系统寄存器设置。但首先站号设置开关设定为0,以便系统寄存器为有效状态。    当利用FPWIN GR编程工具设置时,进入FPWIN GR系统,打开本站的PLC程序。点击系统菜单“设置”的子菜单选项“PLC系统设置”,出现COM1口设置的对话框,对站号进行设置,在通信类型栏目中选择PC-bbbb,如果当前这台PLC设为1号站,则另一台设为2号站,整个网络站号不能重复。表1和表2为各站的设置情况。表1 FPΣ1号单元设定表2 FPΣ2号单元设定    2. 通信格式和波特率的设定    使用PC-bbbb,通信格式固定为:数据长度8位,奇偶校验奇校验,停止位1位;波特率固定为:115200b/s。    3. 链接继电器和链接寄存器的区域分配    为实现PLC之间的数据共享,使用了专用的内部继电器“链接继电器(L)”和数据寄存器“链接寄存器(LD)”。当使用链接继电器时,如果一个PLC中的某个链接继电器为ON状态,那么连接于网络上的其他PLC相应链接继电器也为ON状态。对于链接寄存器,如果一台PLC的链接寄存器的内容被重新写入,那么处于网络中的其他PLC的链接寄存器的内容也改变了。    在本PC-bbbb网络中,链接继电器的区域分配为:1号站的系统寄存器设定No.40为6,No.42为0,No.43为3,No.47为2;2号站的系统寄存器设定No.40为6,No.42为3,No.43为3,No.47为2。    在本控制系统中,由于站1和站2之间主要传递控制量,不需两站之间的数据量的传递,因此也不需分配链接寄存器区域,即链接寄存器采用默认设置。    通过以上设置,将各站的控制程序分别下载到1号PLC和2号PLC中,然后将2台PLC设置成运行模式,则电梯在2台PLC构成的PC-bbbb网络控制下自动运行。通过实际测试,电梯根据外呼和内呼信号能够正确响应,运行稳定可靠。    电梯的PLC控制,证明通信网络可以满足要求I/O点数较多且控制点比较分散的系统的控制要求,且PC-bbbb的建立比较简单。通过本系统的实现可为其他系统的PLC控制提供借鉴作用。   PLC有很强的自诊断能力,当PLC自身故障或外围设备故障,都可用PLC上具有的诊断指示功能的发光二极管的亮灭来诊断。    一、PLC故障查找流程图    1、总体检查    根据总体检查流程图找出故障点的大方向,逐渐细化,以找出具体故障,如图1所示。图1    2、电源故障检查    电源灯不亮需对供电系统进行检查,检查流程图如图2所示。图2    3、运行故障检查    电源正常,运行指示灯不亮,说明系统已因某种异常而终止了正常运行,检查流程图如图3所示。图3    4、输入输出故障检查    输入输出是PLC与外部设备进行信息交流的通道,其是否正常工作,除了和输入输出单元有关外,还与联接配线、接线端子、保险管等元件状态有关。检查流程图如图4、图5所示。图4图5    5、外部环境的检查    影响PLC工作的环境因素主要有温度、湿度、噪音与粉尘,以及腐蚀性酸碱等。2.输出电路的抗干扰设计    对于PLC系统为开关量输出,可有继电器输出、晶闸管输出、晶体管输出三种形式。具体选择要根据负载要求来决定。若负载超过了PLC的输出能力,应外接继电器或接触器,才可正常工作。    PLC输出端子若接有感性负载,输出信号由OFF变为ON或从ON变为OFF时都会有某些电量的突变而可能产生干扰。在设计时应采取相应的保护措施,以保护PLC的输出触点,如图4所示。对于直流负载,通常是在线圈两端并联续流二极管D,二极管应尽可能靠近负载,二极管可为1A的管子。对于交流负载,应在线圈两端并联RC吸收电路,根据负载容量,电容可取0.1μF~0.47μF,电阻可取47Ω~120Ω,且RC尽可能靠近负载。直流负载                 交流负载图4 PLC输出触点的保护    对于大容量负载电路,由于继电器或接触器在通断时会产生电弧干扰,因此须在主触点两端连接RC浪涌吸收器,如图5(A)所示,若电动机或变压器开关干扰时,可在线间采用RC浪涌吸收,如图5(B)所示。图5 大容量负载抗干扰设计    (三)外部配线的抗干扰设计    外部配线之间存在着互感和分布电容,进行信号传送时会产生窜扰。为了防止或减少外部配线的干扰,交流输入、输出信号与直流输入、输出信号应分别使用各自的电缆。集成电路或晶体管设备的输入、输出信号线,要使用屏蔽电缆,屏蔽电缆在输入、输出侧要悬空,而在控制器侧要接地。具体电路设计如图6所示。配线时在30米以下的短距离,直流和交流输入、输出信号线好不要使用同一电缆,如果要走同一配线管时,输入信号要使用屏蔽电缆。30米~300米距离的配线时,直流和交流输入、输出信号线要分别使用各自的电缆,并且输入信号线一定要用屏蔽线。对于300米以上长距离配线时,则可用中间继电器转换信号,或使用远程I/O通道。对于控制器的接地线要与电源线或动力线分开,输入、输出信号线要与高电压、大电流的动力线分开配线。图6 屏蔽电缆的处理方法    (四) PLC装置的接地设计    良好的接地是保证PLC可靠工作的重要条件之一,可以避免偶然发生的电压冲击危害。接地线与机器的接地端相联,基本单元必须接地,如果选用扩展单元,其接地点与基本单元接地点接在一起。为了抑制附加在电源及输入、输出端的干扰,应给PLC接以专用地线,接地线与动力设备(如电动机)的接地点应分开,若达不到此要求,则可与其他设备公共接地,严禁与其他设备串联接地,具体设计如图7所示。另外接地电阻要小于100ft,接地线要粗,接地面积要大于2平方毫米,而且接地点好靠近PLC装置,其间的距离要小于50米,接地线应避开强电回路,若无法避开时,应垂直相交,缩短平行走线的长度。(a) 好                    (b) 可以                   (c) 不允许图7 PLC系统接地设计    四、结论    PLC控制系统的抗干扰设计是系统的一个重要组成部分,本文只从硬件部分加以讨论。在软件编程上也可以利用软件的冗余设计技术设计一些程序,来屏蔽输入元件的误信号,防止输出元件的误动作。在实际应用时可以同时利用硬件和软件的抗干扰技术,让PLC系统满足要求,并能达到一个理想的工作状态。
我们的其他产品
您可能喜欢
西门子模块德国西门子模块西门子模块主板西门子模块代理商西门子模块故障西门子模块回收回收西门子模块
 
相关西门子模块产品