西门子模块6GK7243-1EX01-0XE0规格说明本文结合SIEMENS S7-200型PLC的特点以及电厂输煤系统的特殊要求,介绍了PLC在电厂输煤系统中用于联锁控制的程序设计及应用。 可编程逻辑控制器(PLC)是八十年代发展起来的新一代工业控制装置,是自动控制、计算机和通信技术相结合的产物,是一种专门用于工业生产过程控制的现场设备。 由于控制对象的复杂性,使用环境的特殊性和运行的长期连续性,使PLC在设计上有自己明显的特点:可靠性高,适应性广,具有通信功能,编程方便,结构模块化。 在现代集散控制系统中,PLC已经成为一种重要的基本控制单元,在工业控制领域中应用前景极其广泛。在笔者参与开发的某电厂输煤自控系统中,系统要求在远离输煤廊的主厂房控制室里,对两条输煤线的18台设备进行控制,并实时监测设备的运行状态及皮带跑偏的情况。 鉴于电厂输煤系统的重要性,我们采用PLC实现输煤设备的联锁控制以保证其可靠性和特殊性,工业控制计算机则作为上位机与PLC互相配合,共同完成输煤系统的监控功能。本文将主要介绍PLC的控制应用。 1输煤系统控制要求 输煤系统有两条输煤线,包括给煤机、皮带机、振动筛、破碎机等共18台设备,在电厂中有着极为重要的地位,一旦不能正常工作,发电就会受到影响。为了保证生产运行的可靠性,输煤系统采用自动(联锁)、手动(单机)两种控制方式,自动、手动方式由开关进行切换。由于输煤廊环境恶劣,全部操作控制都在主厂房的主控制室里进行,仪表盘上设有各个设备的启、停按钮,还有为PLC提供输入信号的控制开关。输煤设备控制功能由PLC实现,设备状态监测和皮带跑偏监测以及事故纪录功能则由上级工业控制计算机完成。 为了保证输煤系统的正常、可靠运行,该系统应满足以下要求: ? 供煤时,各设备的启动、停止必须遵循特定的顺序,即对各设备进行联锁控制; ?各设备启动和停止过程中,要合理设置时间间隔(延时)。启动延时统一设定为12s。停车延时按设备的不同要求而设定,分为10s、20s、30s、40s、60s几种,以保证停车时破碎机为空载状态,各输煤皮带上无剩余煤; ?运行过程中,某一台设备发生故障时,应立即发出报警并自动停车,其前方(指供料方向)设备也立即停车。其后方的设备按一定顺序及延时联锁停车; ?各输煤皮带设有双向跑偏开关,跑偏15度时发出告警信号,跑偏30度时告警并自动停车; ?可在线选择启动备用设备。在特殊情况下可由两条输煤线的有关设备组成交叉供煤方式; ?可在线选择启动备用设备。在特殊情况下可由两条输煤线的有关设备组成交叉供煤方式; ?可显示各机电设备运行状况,并对输煤过程有关情况(报警、自动停机等)做出实时纪录。 2 PLC控制系统设计 2.1 PLC选型 根据输煤系统的自控要求,我们选用了德国SIEMENS 公司新推出的S7-200型PLC,具有可靠性高、体积小、扩展方便,使用灵活的特点。基本CPU单元选用的是CPU214,性能如下:2048程序存储器;2048数据存储器;14点输入,10点输出;可扩展7个模块;128个定时器;128个计数器;4个硬件中断、1个定时器中断;实时时钟;高速计数器;可利用PPI协议或自由口进行通信;3级密码保护。扩展模块选用EM221,8个输入点;EM223,16个输入点,16个输出点。 2.2 系统关系 系统关系如图1所示。 图1 系统关系 在输煤自控系统中,工业控制计算机作为上位机和输煤控制PLC进行通信,对皮带跑偏信号和设备的运行状态进行实时采样,并在屏幕上显示输煤系统仿真画面,可以直观地察看设备的状态。当皮带跑偏(跑偏15度)时,在屏幕上显示报警画面;当设备发生故障或皮带严重跑偏(跑偏30度)时,在屏幕上显示报警画面并向PLC发送事故停车信号。 输煤控制PLC则根据控制开关的输入信号,执行对应程序块,控制电机实现对应的功能:向上级工业控制计算机发送工作组态信息,接收上级工业控制计算机发送的事故停车信号,实现事故停车处理功能并启动报警设备。二者配合共同实现输煤系统的监测和控制功能。 上级工业控制计算机同时实现对电厂其他系统的监控,由工业控制计算机、输煤系统PLC和其他系统的现场设备(PLC、监控仪表)共同构成分布式系统(DCS)。 2.3 运行模式 根据输煤过程的要求,本系统设计了两种运行模式。在一般情况下,采用并行模式,可根据需要单独选用或同时运行输煤一线和输煤二线。交叉模式是由输煤一线和输煤二线的有关设备组成的,仅在特殊情况下选用。 2.3.1并行模式 并行一线: 联锁开车顺序:10#皮带机→8#皮带机→6#皮带机→2#破碎机→2#振动筛→4#皮带机→2#皮带机→2#(3#)给煤机→4#给煤机。 联锁停车顺序:与开车顺序相反,延时时间按上述要求设定。2#、3#给煤机某中一台备用。 并行二线 联锁开车顺序:9#皮带机→7#皮带机→5#皮带机→1#破碎机→1#振动筛→3#皮带机→1#皮带机→1#给煤机。 联锁停车顺序:与开车顺序相反,延时时间按上述要求设定。 2.3.2 交叉模式 交叉线 联锁开车顺序:9#皮带机→7#皮带机→6#皮带机→2#破碎机→2#振动筛→4#皮带机→2#皮带机→2#(3#)给煤机。 联锁停车顺序:与开车顺序相反,延时时间按上述要求设定。2#、3#给煤机其中一台备用。 2.4 PLC程序设计 针对输煤系统的控制要求以及具体控制方案的实现,设计程序流程如图2所示。 图2 主程序流程 2.4.1 程序说明 ?子模块0:初始化子程序。在PLC加电时根据各个开关的位置设立标志位。仅在个扫描周期执行。 ?子模块1:并行一线联锁启停控制程序。根据启动标志位1实现并行一线的联锁启动、联锁停车,并判断事故停车信号以实现事故停车。 ?子模块2:并行二级联锁启停控制程序。根据启动标志位2和实现并行二线的联锁启动、联锁停车,并判断事故停车信号以实现事故停车。 ?子模块3:交叉线联锁启停控制程序,根据启动标志位3实现交叉线的联锁启动、联锁停车,并判断事故停车信号以实现事故停车。 ?PLC的输出信号控制电机的接触器,启动送高电平,停止送低电平。但是,1#破碎机功率达90kW,2#破碎机功率达110KW,需要降压启动,所以启动时PLC送一个正脉冲,停车时PLC送一个负脉冲。[NextPage] 2.4.2 程序特点 ?特殊标志位的使用:使用特殊标志位SM0.1,使得初始化子程序(子模块0)仅在个扫描周期执行,而在以后的扫描周期不再执行。这样,个别标志位在PLC加电后不受开关变化的影响。例如,并行模式和交叉模式对应标志位仅在关掉主控开关后才能改变。 ?内部标志位的使用:在程序中,利用标志位来表示不同的现场情况和程序状态,增加了程序的可靠性和灵活性。 ?程序模块化:程序由不同子模块构成,各子模块独立完成各自功能,互不干扰,因而程序结构清晰,便于修改。 ?定时器的使用:程序中,利用不同的定时器来设定不同设备的延时时间,可以灵活地根据控制要求进行延时时间的设定。 2.5 部分程序梯形图 图3 部分联锁起停控制梯形图 图3所示为部分联锁启停控制梯形图,T37用于控制设备的启动延时,T40~T46用于控制相应设备的停车延时,接收到停车信号时,经过相应的延时,对应定时器置位从而实现联锁停车。Q0.3是1#破碎机的启动控制输出通道,启动1#破碎机时送出一个宽度为2s的正脉冲。Q0.7、Q1.0分别是2#给煤机、3#给煤机的控制输出通道,M0.1、M0.2 是内部标志位,用于保证2#、3#给煤机始终为一台工作,一台备用。 本系统中,PLC作为现场控制设备,能够可靠、准确地完成控制操作,并且可以通过与上级工控机通信,组成分布式系统共同完成输煤系统的监测、控制要求,是现代工业控制中比较先进的控制方案,应用前景广泛。 目前,本系统已经在内蒙古伊化集团苏尼特碱矿电厂投入运行,能够可靠、准确地完成控制操作,实时监测和记录输煤过程运行状况,并且能对现场出现的各种突发事件及时做出响应,取得了良好的效果反应式原理由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。1、结构:电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即a与齿1相对齐,b与齿2向右错开1/3て,c与齿3向右错开2/3て,a'与齿5相对齐,(a'就是a,齿5就是齿1)下面是定转子的展开图:2、旋转:如a相通电,b,c相不通电时,由于磁场作用,齿1与a对齐,(转子不受任何力以下均同)。 如b相通电,a,c相不通电时,齿2应与b对齐,此时转子向右移过1/3て,此时齿3与c偏移为1/3て,齿4与a偏移(て-1/3て)=2/3て。如c相通电,a,b相不通电,齿3应与c对齐,此时转子又向右移过1/3て,此时齿4与a偏移为1/3て对齐。 如a相通电,b,c相不通电,齿4与a对齐,转子又向右移过1/3て这样经过a、b、c、a分别通电状态,齿4(即齿1前一齿)移到a相,电机转子向右转过一个齿距,如果不断地按a,b,c,a……通电,电机就每步(每脉冲)1/3て,向右旋转。如按a,c,b,a……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用a-ab-b-bc-c-ca-a这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。3、力矩:电机一旦通电,在定转子间将产生磁场(磁通量ф)当转子与定子错开一定角度产生力f与(dф/dθ)成正比其磁通量ф=br*s br为磁密,s为导磁面积 f与l*d*br成正比 l为铁芯有效长度,d为转子直径 br=n·i/rn·i为励磁绕阻安匝数(电流乘匝数)r为磁阻。力矩=力*半径力矩与电机有效体积*安匝数*磁密 成正比(只考虑线性状态)因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。进给伺服系统是以运动部件的位置和速度作为控制量的自动控制系统。它是一个很典型的系统,主要由以下几个部分组成:位置控制单元;速度控制单元;驱动元件(电机);检测与反馈单元;机械执行部件,如图1所示。图1表明了进给伺服系统各模块(单元)之间的联系。从调节原理的角度,进给伺服系统是一种精密的位置跟踪与定位系统,按其位置环路的开放与否,可以分为开环与闭环两种,其中闭环系统按其位置检测元件的安装部位又可分为:全闭环与半闭环两种。全闭环的位置检测元件安装在进给传动链的末端,半闭环的位置检测元件安装在进给传动链中的某个传动元件上。这在章已介绍过了,这里不再赘述。若说cnc装置是的"大脑",是发布"命令"的"指挥所",那么进给伺服系统则是数控机床的"四肢",是一种"执行机构"。它忠实地执行由cnc装置发来的运动命令,jingque控制执行部件的运动方向,进给速度与位移量。一台数控机床通常由多个进给运动轴(坐标轴)的协调运动才能完成所要求的控制动作,如车床一般有两个进给轴(x、z),铣床一般有3个进给轴(x、y、z),则有更多的进给轴(包括直线轴或回转轴)。这些进给轴有的带动装有工件的工作台运动,有的则带动装有刀具的刀架(如车床)或主轴箱(如铣床等)。每个进给轴均是一个进给伺服系统,通过cnc装置的协调(以指令的方式),数个进给伺服系统的配合,使刀具相对于加工工件产生复杂的曲线运动,加工出所要求的复杂形状的工件。是一种同步电机,其结构同其它电机一样,由定子和转子组成,定子为激磁场,其激磁磁场为脉冲式,即磁场以一定频率步进式旋转,转子则随磁场一步一步前进。步进电机主要有 反应式、电磁式、永磁式几种。下面以反应式步进电机为例,来讨论其工作原理:步进电机由转子和定子两部分组成。转子和定子均由带齿的硅钢片叠成。定子上有绕组分为若干相,每相磁极上有极齿。当某相定子绕组通以直流电压激磁后,便吸引转子,使转子上的齿与该相定子的齿对齐,令转子转动一定的角度,依次向定子绕组轮流激磁,会使转子连续旋转。步进电机的定子可以做成三、四、五、六相甚至于做成八相,各相绕组可在定子上径向排列,也可在定子的轴向上分段排列。下面的flash为步进电机的工作原理动画演示,所选示例为单定子径向分相式反应步进电机的断面图。转子上有均匀分布的40个齿,没有绕组。a、b、c三相定子每相两极,每极上有5个齿,与转子一样齿间夹角均为9°。如果a相通电则转子齿与a相极齿对齐,这时在b相两极下定子齿与转子齿中心线并不对齐,而是转子齿中心线较定子齿中心线反时针方向落后1/3齿距,即3°。c相下,转子齿超前6°。因此,当通电状态由a相变为b相时,转子顺时针方向转过3°,c相通电再转3°。步距角为双拍通电激磁,即按a-ab-b-bc-c-ca-a……的顺序通电激磁,则步距角为一般而言(1)式中:m——绕组相数;z——转子齿数,单拍通电kp=1,双拍通电kp=2。如果按上述相反的方向通电,则步进电机将反时针方向旋转。图1所示为五相五定子轴向分相反应式步进电机。定子和转子都分为5段,呈轴向布置。其上均有16个齿,故齿距为22.5°,各相定子彼此径向错开1/5个齿的齿距(也可以由五段转子彼此径向错开1/5齿距)。如果按a-b-c-d-e-a……的五相五拍通电,步距角为如果按ab-abc-bc-bcd-cd-cde-de-dea-ea-eab-ab……的十拍通电,则步距角为2.25°。图1 五相五定子轴向分相反应式步进电机图2(a)为160bf02型六相功率步进电机,电机的转子有40个齿,不分段由硅钢片叠成。步距角可以是1.5°或0.75°。电机的定子如图(b)所示由硅钢片叠成分为三段,每段有8个磁极,单数极属于同一相,双数极属于另一相,极齿的齿夹角也是360°/40=9°,每段上的两相磁极的极齿彼此便错开4.5°。三段定子装入机壳内时,三段上的记号槽相互径向错开120°,因而三段上三个均布键槽对齐,在键槽中用键固定。这样装配后,段与段之间的极齿便错开1.5°,如果段的两相为a、d相,则第二段为b、e相,第三段为c、f相。功率步进电机的输出转矩大,绕组上的电流大。结构上采用径向与轴向分相相结合的形式,径向尺寸小,惯性小,散热好,而且没有磁漏。图2 160bf02型六相功率步进电机直流与一般直流电机的基本原理是完全相同的,如图1所示,电机转子上的载流导体(即电枢绕组)在定子磁场中,受到电磁转矩m的作用,使电机转子旋转。电磁转矩m=ktia(1)式中:kr——电机的转矩系数(kt=cmф);ia——电机电枢电流。电枢转动后,因导体切割磁力线而产生反电势,其值为ea=ken(2)式中:ke——电机的转矩系数(ke=ceф);n——电枢的转速(r/min)。或反电势为ea=ke60/2=ke'w(3)式中,ke'——电势系数(ke'=60ke/2p)ω——电枢的角速度(rad/s)。作用在电枢的电压u应等于反电势与电枢电压降之和,即(4)式中,ra--电枢电阻。上式就是电机的电压平衡方程。由式(2)和式(4)有(5)由上式可知,调节电机的转速有三种方法。改变电枢电压u;改变磁通量φ,即改变ke的值。改变激磁回路的电阻rj以改变激磁电流ij,可以达到改变磁通量φ的目的;在电枢回路中串联调节电阻rj,此时,转速的计算公式变为(6)调节激磁回路电阻的方法,虽然容易控制,但激磁回路的电感大,因此,时间常数较大,调速的快速性较差。而且激磁回路串接电阻只能使激磁电流减小,所以转速只能由额定转速向上调高。在电枢回路中串接电阻的办法,转速只能调低,而且电阻上的铜耗大,这种方法并不经济。磁通量与电枢电阻固定不变,改变电枢电压的调速方法,一般都由电枢的额定电压向下调低,使电机转速由额定转速向下调低。尽管需要附加调压设备,但是它的调速范围大,所以直流伺服电机常用这种方法调速。