容量充足 1756-CPR2 通讯模块 嵌入式操作

发布日期 :2023-11-23 02:10 编号:12384819 发布IP:120.36.246.186
容量充足 1756-CPR2 通讯模块 嵌入式操作容量充足 1756-CPR2 通讯模块 嵌入式操作容量充足 1756-CPR2 通讯模块 嵌入式操作
供货厂家
厦门盈亦自动化科技有限公司  
品牌
A-B
型号
1756-CPR2
产地
美国
报价
596.00元/件
联系人
兰顺长(先生)销售经理
电话
0592-6372630
手机
18030129916
询价邮件
3001627136@qq.com
区域
厦门工控系统及装备
地址
厦门市集美区宁海三里10号1506室
在线咨询:
点击这里给我发消息
18030129916
让卖家联系我
详细介绍
手机版链接:https://m.trustexporter.com/cz12384819.htm

容量充足 1756-CPR2 通讯模块 嵌入式操作

1756-A10

1756-A13

1756-A17

1756-A4

1756-A7

1756-BA1

1756-BA2

1756-BATA

1756-IF16

1756-IF16H

1756-IF8

1756-IF8H

1756-IF8I

1756-IF6I

1756-IF6CIS

1756-IT6I

 

1794-IM16

1794-IM8

1794-IR8

1794-IRT8

1794-IT8

1794-IV16

1794-IV32

1794-OA16

 

1756-HSC

1756-IA16

1756-IA16I

1756-IA32

1756-IB16

1756-IB16D

1756-IB16I

1756-IB32

 

1756-CN2

1756-CN2R

1756-CNB

1756-CNBR

1756-DHRIO

1756-DNB

1756-EN2T

1756-EN2TR

1756-EN3TR

1756-ENBT

1756-ENET

1756-EWEB

1756-IR6I

1756-IR12

1756-IRT8I

1756-IT6I2

1756-IM16

1756-L61

1756-L62

1756-L63

1756-L64

1756-L65

1756-L71

1756-L71S

 

1756-M03SE

1756-M08SE

1756-M16SE

1756-N2

1756-OA16

1756-OA16I

1756-OB16D

1756-OB16E

1756-OB16I

1756-OB32

1756-OF4

1756-OF8

 

1756-BATA

1756-CNB

1756-IC16

1756-IB16

1756-IB32

1756-IF16

1756-IR61

1734-ACNR

1734-ADN

1734-AENT

1734-AENTR

1734-APB

 

1756-TBS6H

1756-TBSH

1757-SRM

1746-N2

1746-NI16I

1746-NI4

 

1756-PA75R

1756-PB72

1756-PB75

1756-RM

1756-IB16

1746-IV32

 

1756-OF8I

1756-OW16I

1756-PA72

1756-PA75

1794-OA8

1794-OA8I

 

1746-IA16

1746-IB16

1746-IB32

1746-IM16

1746-IO12DC

1746-ITB16


容量充足 1756-CPR2 通讯模块 嵌入式操作

01

力传感器是力控的关键部件,六维力传感器测量为全面

1.1 六维力传感器是维度高的力觉传感器

力觉传感器,顾名思义就是感知并度量力的传感器。按照测量维度,力觉传感器 可以分为一至六维力传感器。能测几个维度,它就是几维力传感器。常见的是 一维、三维和六维力传感器,二维和五维的力传感器较少。

(1) 一维力传感器:如果力的方向和作用点是固定的,此时可以选择用一维 力传感器进行测量。我们可以通过安装定位,使被测量力 F 的方向完全 与标定坐标轴(OZ 轴)重合,这样就可以对力进行jingque测量。代表产品 有称重传感器、压力传感器等。当力的方向与传感器的测量轴线平行但 不重合,此时传感器的测量结果将会出现较大的误差。

(2) 三维力传感器:如果力 F 的作用点 P 始终与传感器的标定参考点 O 保持 重合,力 F 的方向在三维空间中随机变化,那么用三维力传感就能完成 测量任务。因为被测量的力可以分解为三维力传感器标定坐标系下的三 个正交分量(Fx、Fy、Fz),三维力传感器的三个测量单元可以分别对 其进行测量。当力的作用点远离传感器,这个力在经过正交分解并平移 至三维力传感器的校准中心后,传感器既要承受力 Fx/Fy/Fz 三分量的作 用,又要承受 Mx/My/Mz 三个弯矩的作用,这种情况下,三维力传感器 的测量结果将会出现较大偏差。

(3) 六维力传感器:如果力的方向和作用点都在三维空间内随机变化,此时 应该选择用六维力传感器进行测量。因为空间中任意作用点上的力可以 在六维力传感器的标定坐标系内,分解为沿标定坐标轴的三方向分力 (FX、FY、FZ)和绕标定坐标轴的三方向力矩(MX、MY、MZ)。这 类传感器更适用于参考点的距离较远,且随机变化情景,测量精度要求 较高。

六维力传感器是维度高的力觉传感器,它能给出为全面的力觉信息。六维力传感器,又叫六维力/力矩传感器、六轴力传感器、F/T 传感器,是一种特 殊的力传感器,能够同时测量中性坐标系(OXYZ)内的三个力(FX、FY、FZ) 和三个力矩(MX、MY、MZ)。六维力传感器一般分成固定端(机器人端)和 加载端(工具端),传感器的内部算法会解耦各方向力和力矩间的干扰,使力的 测量更为。

根据传感元件的不同,六维力/力矩传感器主要分为: 应变片式、光学式以及压 电/电容式。目前,市场应用的六维力/力矩传感器大部分是基于应变式的测量。基于压电、电容和光学等原理测量的传感器有一定的理论研究和实验,下游尚未 得到广泛应用。每种类型的六维力传感器都具有其独特的优点和适用范围,随着相关研究的不断深入,不同测量机理的传感器将会发挥自身优势被应用到各种场 合,进而推动六维力传感器向多元化方向发展。

经过对稳定性、刚度、动态特性、成本与信噪比五个维度的比较,硅应变传感 器综合性能优异。硅应变片的稳定性、信噪比、动态特性要好于金属应变片,刚 度上两者差异不大,成本上金属略优,但这几年硅应变片的工艺有了提升和改进, 综合成本也在大幅降低。

六维力/力矩传感器的研发难度非常大。它不是三个一维力传感器和三个扭矩传 感器结构的简单叠加,它的非线性力学特征明显,要考虑多通道信号的温漂、蠕 变、交叉干扰、数据处理的实时性,再加之六维联合加载标定的复杂性 ,六维 力传感器的技术难度可谓是一维力传感器难度的六次方。

六维力传感器面临两个关键技术问题:全方位机械过载保护和动态性能。机械 过载保护是指作用到传感器的力超过某一数值时,为避免传感器损坏而增加的一 种附属结构。国内外学者也提出了基于不同结构的机械过载保护装置,但由于保 护装置结构复杂且加工精度要求较高等限制,生产出具有全方位机械过载保护装 置的六维力传感器的成熟产品仍有难度。传感器性能指标包括静态性能指标和动 态性能指标。在实际的力测量过程中,被测信号大多是动态信号,如机器人打磨 抛光时的接触力、物体高速运动过程中的称重和paodan发射过程时的后座力等信号, 这些信号属于快速时变信号,动态性能较差的传感器很难跟踪测量这些信号,所以必须在充分了解传感器的动态性能后方能选择合适的传感器来进行测量。

除了优化自身结构、形状等方法提高动态性能外,一些国内外学者利用动态补偿滤波 器、遗传算法、神经网络算法等智能算法来提高传感器的动态性能,取得了良好 的效果。国外对六维力/力矩传感器的研究起步较早。国内外学者对六维力传感器结构都 做了大量的研究与改进,目的是提高传感器的灵敏度和抗过载能力,减少维间耦 合误差,改善动态性能,从而更好地辅助机器人实现智能化控制。

1.2 力传感器是机器人实现主动柔顺控制的核心部件

六维力测量技术属于平台型技术,根据应用场景的环境、载荷、安装、通讯、算 力、动力学特性等需求不同,在不同的应用领域,六维力传感器的产品形态和技 术特点也有较大区别。目前,六维力传感器主要应用于汽车行业的碰撞测试、轮 毂、座椅等零部件测试以及航空航天、生物力学、医疗领域、科研实验、机器人 与自动化等领域。

在汽车领域,六维力/力矩传感器被广泛地用在汽车部件和系统级测试、发动机 和动力总成测试、车辆和试验厂测试、总装和终测试。它们在确定新车和部件 设计的完整性和优化方面都能发挥重要作用,同时还有助于保证效率、安全性和 正确的功能。航空航天领域是六维力传感器早的重要应用领域之一,可用于测量风洞试验、 飞机、卫星、火箭等飞行器各种运动状态下的六维力信息,通过这些信息,飞行 器可以更加准确地感知环境,控制姿态,完成各项任务。随着航空航天技术的不 断发展和应用的深入,六维力和力矩传感器还可以用于飞机制造、飞行器着陆和 起飞过程的监测、机械臂控制、结构健康监测等领域。六维力传感器的应用能够 提高航空航天系统的性能、安全性和可靠性。

在医疗手术和康复领域,手术机器人的力感知可作为力反馈的依据以提升手术的 安全性。根据临床场景的不同,手术机器人主要分为腔镜机器人、骨科机器人、 穿刺机器人、经自然腔道机器人、泛血管机器人等五类机器人。目前,协作机械 臂+六维力传感器的组合已广泛应用于血管介入手术机器人、外科手术机器人、 医疗检测机器人及远程操控机器人等;中国手术机器人行业处于早期发展阶段, 增长潜力较大。根据 GGII预计,未来 3-5年,骨科机器人和泛血管手术机器人将 占手术机器人市场的 20%以上。随着技术的不断进步和应用的深入,六维力传感 器在医疗领域的应用前景将会更加广阔,六维力传感器产品将逐渐成为类似应用 场景中的刚需。

柔顺控制可解决很多传统位置控制难以解决的问题,有利于扩展机器人的功能。在许多交互任务中需要机器人与对象或环境发生接触,两者接触时,会在接触面 之间产生相互作用力,只靠位置控制可能导致很大的误差。由于采用位置控制的机器人可通过结构化环境的设置,依靠快速、的位置控制预设编程完成“固 定轨迹”的任务。而在执行接触任务时,末端执行器与规划轨迹之间的微小偏差 就可能导致机械臂与物体表面脱离接触或在接触面上施加过强的压力;对于机器 人的高刚性结构,微小的位置误差可能会导致非常大的作用力甚至灾难性的后果。所以为了实现交互任务,机器人需要表现出柔顺性。柔顺力控主要是从力传感器 获得力信号,再将其转化为机器人的控制信号,使机器人响应此信号而动作。

人机协作要以机器人的柔顺控制作为前提。当与机器人产生交互的外界环境发生 改变,机器人应对这种改变产生顺应性变化,这就是所谓的柔顺性。如让机器人 末端执行器在受到环境扰动时能保持与环境的恒定接触力,或是机器人顺应操作 人员施加的外部牵引力,以运动到操作人员期望的位置。柔顺控制主要分为主动柔顺控制和被动柔顺控制。被动柔顺控制主要依靠一些机 械装置(如减震器、弹簧等)使机器人表现出对环境的柔顺特性,主动柔顺控制 依靠控制策略令末端产生需要的刚度、阻尼或力作用以达到柔顺的目的。在实际 应用中,仅有少数的机器人在与环境接触中具有非常有限的主动柔顺能力。

(1) 被动柔顺控制:借助某些机械装置的物理上的柔顺性,对接触力产生被动 的适应。如弹簧、阻尼等构成的柔顺装置,可以靠弹簧形变吸收或者阻尼损 耗机器人与环境产生接触时产生的能量。但当前被动柔顺控制方法在应用效 果上仍存在着多种不足,如结构刚度降低、机器人关节的重量增长、结构的 复杂性增加。在此背景之下,主动柔顺控制则成为了现今研究者们开展柔顺 控制研究的首要方式。

(2) 主动柔顺控制:需要机器人获取对力信息和位置信息的反馈,利用力与位 置的反馈信息结合相应算法去主动控制机器人运动或者作用力。机器人实现 主动柔顺控制的方式主要有力/位混合控制、零力控制和阻抗控制这三种控 制理论。

力/位混合控制:这种理论模型有位置反馈环和力反馈环,机器人在进行任 务的过程中,可以把机器人末端执行机构的工作空间分解为位置、力两个相 互正交且独立的子空间。在力空间内,通过力控制方法确保实际接触力大 程度的接近期望接触力;在位置空间内,通过位置控制方法保证机器人能够 沿期望轨迹运动,通过力和位置控制策略协同作用实现机器人对末端作用力 的主动柔顺控制过程。

零力控制:直接示教又称拖动示教是目前人机协作的主要方式之一,即人 类操作者直接通过手动拖动机器人来进行示教任务。而零力控制便是实现机 器人拖动示教的核心技术。目前零力控制主要有两种实现方法:基于位置 的零力控制以及基于直接力矩控制的零力控制。

阻抗控制:根据机器人末端执行器的位置(或速度)和接触力之间的对应 关系,通过控制器调整位置(速度)误差或刚度系数来控制机器人末端执行 器的接触力。阻抗控制理论根据控制原理可以分为基于位置的阻抗控制(导纳控制) 和基于力的阻抗控制。

六维力/力矩传感器是机器人实现柔顺化、智能化操作的关键传感设备。只具有 位置反馈将难以满足柔顺控制的需要,在机器人控制中加入力反馈环节势在必行。机器人力觉传感器是模仿人类四肢关节功能的机器人获得实际操作时的大部分力 信息的装置,是机器人主动柔顺控制必不可少的,它直接影响着机器人的力控制 性能。在机器人力控解决方案中,目前应用为广泛的力觉传感器就是六维力传 感器。

目前,六维力传感器主要用于检测、预防、控制、示教、测量、保护等场景,通 常安装在机器人的底座或者末端,可以提供应用过程中的力交互信息,对于下游 客户而言有效且可靠的数据至关重要。

未来,人形机器人力控技术的发展将呈现出多信息融合(触觉、力觉和视觉等), 主要通过配备(AI、视觉、力觉传感器等)传感器得以实现,尤其在手腕、脚踝关 节等处更适用六维力矩传感器,这将为六维力传感器在人形机器人领域的应用 带来巨大的发展空间。

容量充足 1756-CPR2 通讯模块 嵌入式操作


我们的其他产品
您可能喜欢
无线通讯模块通讯模块三菱通讯模块DCS通讯模块德国伦茨通讯模块
 
相关通讯模块产品